Maternal effect for DNA mismatch repair in the mouse.

نویسندگان

  • Vanessa E Gurtu
  • Shelly Verma
  • Allie H Grossmann
  • R Michael Liskay
  • William C Skarnes
  • Sean M Baker
چکیده

DNA mismatch repair (DMR) functions to maintain genome stability. Prokaryotic and eukaryotic cells deficient in DMR show a microsatellite instability (MSI) phenotype characterized by repeat length alterations at microsatellite sequences. Mice deficient in Pms2, a mammalian homolog of bacterial mutL, develop cancer and display MSI in all tissues examined, including the male germ line where a frequency of approximately 10% was observed. To determine the consequences of maternal DMR deficiency on genetic stability, we analyzed F(1) progeny from Pms2(-/-) female mice mated with wild-type males. Our analysis indicates that MSI in the female germ line was approximately 9%. MSI was also observed in paternal alleles, a surprising result since the alleles were obtained from wild-type males and the embryos were therefore DMR proficient. We propose that mosaicism for paternal alleles is a maternal effect that results from Pms2 deficiency during the early cleavage divisions. The absence of DMR in one-cell embryos leads to the formation of unrepaired replication errors in early cell divisions of the zygote. The occurrence of postzygotic mutation in the early mouse embryo suggests that Pms2 deficiency is a maternal effect, one of a limited number identified in the mouse and the first to involve a DNA repair gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wi-Fi (2.4 GHz) affects anti-oxidant capacity, DNA repair genes expression and apoptosis in pregnant mouse placenta

Objective(s): The placenta provides nutrients and oxygen to embryo and removes waste products from embryo’s blood. As far as we know, the effects of exposure to Wi-Fi (2.4 GHz) signals on placenta have not been evaluated. Hence, we examined the effect of prenatal exposure to Wi-Fi signals on anti-oxidant capacity, expressions of CDKNA1, and GADD45a as well as apoptosis...

متن کامل

Mismatch repair and differential sensitivity of mouse and human cells to methylating agents.

The long-patch mismatch repair pathway contributes to the cytotoxic effect of methylating agents and loss of this pathway confers tolerance to DNA methylation damage. Two methylation-tolerant mouse cell lines were identified and were shown to be defective in the MSH2 protein by in vitro mismatch repair assay. A normal copy of the human MSH2 gene, introduced by transfer of human chromosome 2, re...

متن کامل

سه موتاسیون ژرم لاین جدید در ژن MLH1 در بیماران مبتلا به سرطان کولورکتال ارثی

Abstract Background: Hereditary non-polyposis colorectal cancer is the most common cause of early onset of hereditary colorectal cancer. In the majority of Hereditary non-polyposis colorectal cancer families, microsatellite instability and germline mutation in one of the DNA mismatch repair genes in clouding MSH2, MLH1, MSH6 and PMS2 are found. The Objective of this study was to determine th...

متن کامل

Efficient repair of A/C mismatches in mouse cells deficient in long-patch mismatch repair.

A previously unrecognized mismatch repair activity is described. Extracts of immortalized MSH2-deficient mouse fibroblasts did not correct most single base mispairs. The same extracts carried out efficient repair of A/C mismatches. A/G mispairs were less efficiently corrected and there was no significant repair of A/A. MLH1-defective mouse extracts also repaired an A/C mispair. A/C correction b...

متن کامل

The Effect of Msh2 Knockdown on Toxicity Induced by tert-Butyl-hydroperoxide, Potassium Bromate, and Hydrogen Peroxide in Base Excision Repair Proficient and Deficient Cells

The DNA mismatch repair (MMR) and base excision repair (BER) systems are important determinants of cellular toxicity following exposure to agents that cause oxidative DNA damage. To examine the interactions between these different repair systems, we examined whether toxicity, induced by t-BOOH and KBrO3, differs in BER proficient (Mpg (+/+), Nth1 (+/+)) and deficient (Mpg (-/-), Nth1 (-/-)) mou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 160 1  شماره 

صفحات  -

تاریخ انتشار 2002